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New Memory Hierarchies 

• High bandwidth, on processor memory
• Large, high bandwidth cache

• Latency cost for individual access may be an issue

• Main memory
• DRAM

• Costly in terms of energy, potential for lower latencies 
than high bandwidth memory

• Byte-addressable Persistent Memory  

(B-APM)
• High capacity, ultra fast storage

• Low energy (when at rest) but still slower than DRAM

• Available through same memory controller as main 
memory, programs have access to memory address 
space
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Optane DCPMM



Capacity, performance, and persistence

• New memory technologies offer differing options for 
future memory hierarchies

• DRAM for average volume, average bandwidth, average 
latency, high energy

• HBM for lower volume, high bandwidth, average latency, very 
high energy

• B-APM for very high volume, low bandwidth, high latency, 
low energy

• B-APM also offers persistence as a by-product of it’s 
underlying hardware

• B-APM also presents asymmetric performance

• Higher bandwidth for reads



Hierarchical solutions

• Memory hierarchies offer automatic solutions for 
managing different types of memory with different 
performance characteristics

• i.e. Intel Memory mode – 2 level-memory

• Memory controller knows of the two levels of external 
memory

• Fast and small memory is used as cache for slow and large 
memory

• This ignores the persistent functionality available in 
B-APM

• Volatile in practise, even though the storage medium is 
persistent



I/O Performance



B-APM potential

• Provide scalable storage hardware with compute nodes

• Localise performance variation to assigned nodes

• Challenges:
• Data movement 

• Interfaces



NGIO Prototype

• 34 node cluster with 3TB 
of Intel DCPMM per node

• 2 CPUS per node, each 
with 1.5TB of DCPMM and 
96GB of DRAM

• External Lustre filesystem

• The EPCC NGIO system 
was funded by the 
European Union's 
Horizon 2020 Research 
and Innovation 
programme under Grant 
Agreement no. 671951.



Move from I/O to Data

• Biggest potential for B-APM is removing the I/O 

interface

• moving from I/O and application memory operations model, to 

just application operations

• Removing file (and block) operations



IOR - Data block sizes 



Data access sizes



Multi-level memory exploitation

• Simple image sharpening stencil

• Each pixel replaced by a weighted 
average of its neighbours

• weighted by a 2D Gaussian

• averaged over a square region

• we will use:

• Gaussian width of 1.4

• a large square region

• then apply a Laplacian

• this detects edges

• a 2D second-derivative 2

• Combine both operations

• produces a single convolution filter

• 4 similar sized arrays, two that are 
updated and two that are source data



address = (int **) malloc(nx*sizeof(int *) + nx*ny*sizeof(int));

fuzzy = int2D(nx, ny, address);

pmemaddr1 = pmem_map_file(filename, array_size,PMEM_FILE_CREATE|PMEM_FILE_EXCL,

0666, &mapped_len1, &is_pmem)

fuzzy =  int2D(nx, ny, pmemaddr1);

int **int2D(int nx, int ny, int **idata){

int i;

idata[0] = (int *) (idata + nx);

for(i=1; i < nx; i++){

idata[i] = idata[i-1] + ny;

}

return idata;

}

Multi-level memory exploitation

• Read-only data in DRAM

Calculation time was 56.175083 seconds

Overall run time was 58.261385 seconds

• Read-only data in B-APM

Calculation time was 53.992465 seconds

Overall run time was 56.385472 seconds



Multi-level memory exploitation

• 2D CFD Stream function kernel

• Jacobi kernel updates the grid

• Swap update and data arrays at each iterator

𝛻2Ψ =
𝜕2Ψ

𝜕𝑥2
+
𝜕2Ψ

𝜕𝑦2
= 0

Ψ𝑖−1,𝑗 +Ψ𝑖+1,𝑗 +Ψ𝑖,𝑗−1 +Ψ𝑖,𝑗+1 − 4Ψ𝑖,𝑗 = 0

psinew[i][j] = 0.25*(psi[i+1][j] + psi[i-1][j] +

psi[i][j+1] + psi[i][j-1])



Multi-level memory exploitation

No persistence: DRAM: 7.95 seconds   B-APM: 9.64 seconds

Persistence:      DRAM: 7.95 seconds   B-APM: 10.67 seconds

totalfilename = (char *)malloc(1000*sizeof(char));

strcpy(totalfilename,"/mnt/pmem_fsdax");

sprintf(totalfilename+strlen(totalfilename), "%d/", socket);

strncat(totalfilename, filename, strlen(filename));

sprintf(totalfilename+strlen(totalfilename), "%d", rank);

// total memory requirements including pointers

mallocsize = nx*sizeof(void *) + nx*ny*typesize;

if ((array2d = pmem_map_file(totalfilename, mallocsize,

PMEM_FILE_CREATE|PMEM_FILE_EXCL,

0666, mapped_len, &is_pmem)) == NULL) {

perror("pmem_map_file");

fprintf(stderr, "Failed to pmem_map_file for filename: %s\n",totalfilename);

exit(-100);

}

void swap_pointers(double*** pa, double*** pb) {

double** temp = *pa;

*pa = *pb;

*pb = temp;

}



Performance – workflows

Performance benefits of data staging on OpenFOAM workflow

16 nodes, 768 MPI procs 20 nodes, 960 MPI procs

Stage Lustre B-APM Benefit Lustre B-APM Benefit

decomposition 1191 secs 1105 secs – 1841 secs 1453 secs –

data staging – 32 secs – – 330 secs –

solver 123 secs 66 secs 46% faster 664 secs 78 secs 88% faster

Total 1314 secs 1203 secs 8% faster 2505 secs 1861 secs 25% faster

OpenFOAM simulation: low-Reynolds number 

laminar turbulent transition modeling

Input: mesh with ≈43M points

Stages: linear decomposition, 

parallel solver

768 MPI processes, 16 nodes

2 configurations:

① read/write to Lustre

② stage in, read/write on NVM, stage out



N3D/SEMTEX

• Small test case:

• 72 processes

• 900,000 files, 4.5 TBs produced

• Larger test case:

• 512 processes

• 6,400,000 files, 30 TBs produced

• Files required to transfer 
data from the forward 
phase to the adjoint phase

• Velocity on each process at 
each time step 



N3D/SEMTEX

• Optimise by moving these temporary files to the 

B-APM

• Use as files initially

• Small case single iteration runtime:

• Lustre: 8403 seconds

• B-APM: 7365 seconds

• Larger scale case single iteration runtime:

• Lustre: 76872 seconds

• B-APM: 36354 seconds 

• Next step to remove the files and use as memory only

• Lots of small access should benefit from this optimisation



Performance - STREAM

Mode Min BW (GB/s) Median BW (GB/s) Max BW (GB/s)

App Direct (DRAM) 142 150 155

App Direct (DCPMM) 32 32 32

Memory mode 144 146 147

Memory mode 

(large) 

12 12 12

https://github.com/adrianjhpc/DistributedStream.git

STREAM_TYPE     *a, *b, *c;

pmemaddr = pmem_map_file(path, array_length,

PMEM_FILE_CREATE|PMEM_FILE_EXCL,

0666, &mapped_len, &is_pmem)

a = pmemaddr;

b = pmemaddr + (*array_size+OFFSET)*BytesPerWord;

c = pmemaddr + (*array_size+OFFSET)*BytesPerWord*2;

#pragma omp parallel for

for (j=0; j<*array_size; j++){

a[j] = b[j]+scalar*c[j];

}

pmem_persist(a, *array_size*BytesPerWord);



NUMA issues



NUMA issues

unsigned long get_processor_and_core(int *socket, int *core){

unsigned long a,d,c;

__asm__ volatile("rdtscp" : "=a" (a), "=d" (d), "=c" (c));

*socket = (c & 0xFFF000)>>12;

*core = c & 0xFFF;

return ((unsigned long)a) | (((unsigned long)d) << 32);;

}

strcpy(path,"/mnt/pmem_fsdax");

sprintf(path+strlen(path), "%d", socket/2);

sprintf(path+strlen(path), "/");



Performance - workflows

1 node

4 

processes

4 files

20 nodes

80 processes

80 files

1 node

4 

processes

80 files



Persistent B-APM usage

• Strategy needed to recover data on failure

• Transactional approach
• Use higher level pmem library functions

• Application logic
• Using low level pmem functions

• Main focus is hardware failure
• i.e. reboot but memory still intact

• Data resiliency another issue
• What if an NVDIMM fails

• Using low level pmem functionality there is no automatic 
redundancy

• No RAIDing



Exploiting distributed storage
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Optimising data usage

• Reducing data movement

• Time and associated energy cost for moving data too 

and from external parallel filesystems

• Move compute to data

• Considering full scientific workflow

• Data pre-/post-processing

• Multi-physics/multi-application simulations

• Combined simulation and analytics

• Enable scaling I/O performance with compute 

nodes



Summary

• Multi-level memory offers the potential for
• Merging I/O and memory operations into a single space

• Reducing volatile memory requirements for system 
architectures

• Removing I/O overheads and localising performance

• Enabling new technologies with HPC systems 
requires systemware support

• Transparently handling data for applications 
requires integration with job schedulers and data 
storage targets

• In-node B-APM is potentially very powerful for 
performance, but will require some changes to use 
efficiently (either at the systemware level or the 
application level)


