Optimising CFD /O
through on-node non-
volatile memory

Adrian Jackson
a.Jackson@epcc.ed.ac.uk

a;s
THE UNIVERSITY ' epCC ‘

of EDINBURGH

New Memory Hierarchies

High bandwidth, on processor memory

Large, high bandwidth cache
Latency cost for individual access may be an issue

Main memory

DRAM
Costly in terms of energy, potential for lower latencies
than high bandwidth memory

Byte-addressable Persistent Memory

(B-APM)
High capacity, ultra fast storage
Low energy (when at rest) but still slower than DRAM

Available through same memory controller as main
memory, programs have access to memory address

space

A% :‘;-']'Hl-_'.UN[VILRS]'I'Y{y’lil}[NHURGH

Cache

Memory

Storage

.

Cache

HBW Memory

NVRAM

Slow Storage

Fast Storage

Slow Storage

CPCC

Optane DCPMM
COMPLETE SYSTEM ON A MODULE

PMIC

Generates all the rails for

Media and controller

(inteD OPTANE DC O

PERSISTENT MEMORY

DQ buffers

Need for high bit rate

signal Integrity

AIT DRAM
Where address

ndirection table lies

SPI Flash

Where FW is saved

Intel® Optane™ Energy store caps

media Ensures flushing of a
11 parallel devic module queues at power fail
for data + ECC+ spare

Intel” Optane™ DC
persistent memaory controller

microcontroller 64n

DQ buffers

@ -)
w g transfers “nte'
o't :
& 2 AES-XTS 256 ECC engine | XEON'
= encryption PLATINUM
£3 buffers C&A Bus insice
=g Power and
2 thermal control scheduler (i
- Ez nd Canerat tal® Yonn®
DDR-T agent AIT management) g Generation Intel® Xeon
g » Scalable processo
Gold & Platinum SKUs
powerra L[S

THLE UNIVERSITY of EDINBURGH

CPCC

Capacity, performance, and persistence

New memory technologies offer differing options for
future memory hierarchies

DRAM for average volume, average bandwidth, average
latency, high energy

HBM for lower volume, high bandwidth, average latency, very
high energy

B-APM for very high volume, low bandwidth, high latency,
low energy

B-APM also offers persistence as a by-product of it's
underlying hardware

B-APM also presents asymmetric performance
Higher bandwidth for reads

* ‘ 5 THLE UNIVERSITY of EDINBURGH ‘epCC‘

Hierarchical solutions

Memory hierarchies offer automatic solutions for
managing different types of memory with different
performance characteristics

l.e. Intel Memory mode — 2 level-memory

Memory controller knows of the two levels of external
memory

Fast and small memory is used as cache for slow and large
memory

This ignores the persistent functionality available in
B-APM

Volatile in practise, even though the storage medium is

s persistent
Q2L THE UNIVERSITY of EDINBURGH \epCC\

/O Performance

IOR Easy Bandwidth using fsdax and 48 processes per node

Bl Read
. Write

1750 A

1500 A

1250 A

1000 A

Bandwidth (GB/s)

Nodes | epCC |

B-APM potential

* Provide scalable storage hardware with compute nodes
 Localise performance variation to assigned nodes

« Challenges:

 Data movement
* |nterfaces

Lustre servers network throug
700 MB/s

600 MB/s

500 MB/s

400 MB/s T op F o+ ox BEop oW P P R owoxopozox Eox o« ¥ o

300 MB/s g 8 2 ¥ ® ¥ ¥ ¥ 3 8 §® ¥ ¥ % 8 8 & § ‘& B ‘® 8 %
200 MBE/s
100 MEBE/s

0B/s . 1 |
9/1216:00 9/13 00:00 9/13 0800 9/1316:00 9/14 00:00 9/14 08:00

== Read (sent to clients) Write (received from clients)

) THE UNIVERSITY of EDINBURGH €OCC|

NGIO Prototype

* 34 node cluster with 3TB s Ty
of Intel DCPMM per node B i 7

« 2 CPUS per node, each e
with 1.5TB of DCPMM and "= [hm
96GB of DRAM s

- External Lustre filesystem |

 The EPCC NGIO system
was funded by the
European Union's
Horizon 2020 Research
and Innovation »
programme under Grant |
Agreement no. 671951.

M32): THE UNIVERSITY of EDINBURGH

CPCC

Move from I/O to Data

- Biggest potential for B-APM is removing the 1/O
Interface
- moving from I/O and application memory operations model, to
just application operations

- Removing file (and block) operations

IOR Easy Bandwidth - fsdax vs pmdk I0OR Easy Bandwidth - fsdax vs pmdk 256 byte I/O operations
| mm Rread (pmdk) | e Read (pmdk)
17507 s write (pmadk) 10° 4 == Write (pmdk)
I Read (fsdax)] W Read (fsdax)

1500 | mmm Write (fsdax) 1 mm Write (fsdax)

2 4
7 1250 n 1075
[wu] 4]
© (2]
£ 1000 c
et et
b= b=l
= = 10!+
2 750 2]
1] 1]
[2a] [sa]
500 100 3
250 -
1071 4
0
1 2 4 8 16 32 34 1 2 4 8 16 32

Nodes Nodes

AV THE UNIVERSITY of EDINBURGH epcc

IOR - Data block sizes

IOR Easy Read Bandwidth using fsdax on one node varying block sizes IOR Easy Read Bandwidth using pmdk on one node varying block sizes
80 | mmm 128 bytes w128 bytes
w256 bytes 70 4 w256 bytes
w512 bytes w512 bytes
70 4 == |
- -
60 1
- -
60 -
- -
- 50 q -
7 50 1 L % -
& L o L]
e - 2 w0 -
S -] -
T§ 40 4 =
E] - Z -
H - s -
© 0= @ 30 + —
- -
- -
20
20
10 10 4
0 0-
Nodes
IOR Easy Write Bandwidth using fsdax on one node varying block sizes
= 128 bytes IOR Easy Write Bandwidth using pmdk on one node varying block sizes
w256 bytes w128 bytes
w512 bytes w256 bytes
g mm 1kb 12 | w512 bytes
o 2 kb e 1kb
o 4kb 2 kb
 8kb o 4kb
= 16 kb 10 foske
. - 32 kb 16 kb
o= ==
& e 128 kb 2 g
] - 256 kb @ 8 w128 kb
£ | == 512k =) 5L
z] w512 kb
3 f lmb = Co1mb
£ 44 00 2mb 2 6 S 2mb
@ | amb @ -
w8 mb 8 mb
- 2] e
2
5

0- 0-
Nodes Nodes

Data access sizes

I0OR Easy Bandwidth - fsdax vs pmdk using a 256-byte transfer size IOR Easy Bandwidth - fsdax vs pmdk using a 512-byte transfer size

B Read (pmdk) B Read (pmdk)
- Write (pmdk) . Write (pmdk)
I Read (fsdax) I Read (fsdax)
I \Write (fsdax) I \Write (fsdax)

w 3

o i

e !

5 1

T)

= E

= 3

= -

1] 3

© i

Nodes Modes

THE UNIVERSITY of EDINBURGH |epCC|

Multi-level memory exploitation

0.2 -

Simple image sharpening stencll
Each pixel replaced by a weighted = ﬂ
average of its neighbours 5
weighted by a 2D Gaussian
averaged over a square region
we will use:

Gaussian width of 1.4
a large square region
then apply a Laplacian

this detects edges
a 2D second-derivative V2

A

0.05

0

Combine both operations
produces a single convolution filter

_3

4 similar sized arrays, two that are -4
~ updated and two that are source data W

4

epcc

X

Multi-level memory exploitation

address = (int **) malloc (nx*sizeof (int *)

fuzzy = int2D(nx, ny, address);

+ nx*ny*sizeof (int))

.
4

pmemaddrl = pmem map file(filename, array size,PMEM FILE CREATE|PMEM FILE EXCL,
0666, &mapped lenl, &is pmem)

fuzzy = 1int2D(nx, ny, pmemaddrl);

int **int2D(int nx, int ny, int **idata) {
int 1i;
idata[0] = (int *) (idata + nx);
for(i=1; i < nx; 1i++){
idatal[i] = idatal[i-1] + ny;

return idata;

THLE UNIVERSITY of EDINBURGH

* Read-only data in

Calculation time was

Overall run time was

* Read-only data in

Calculation time was

Overall run time was

DRAM

56.175083 seconds
58.261385 seconds

B-APM
53.992465 seconds
56.385472 seconds

CPCC

Multi-level memory exploitation

- 2D CFD Stream function kernel

prg - ¥ ¥ T
~ 0x?2 dy? \
Wi +Wis+¥j1+¥ 1 —4%Y; =0 l

- Jacobi kernel updates the grid
- Swap update and data arrays at each iterator

psinew[1][]J] = 0.25*(psi[i+1][]J] + psi[i-1][]] +

psi[i] [J+1] + psi[1][]J-1])

’* ‘ &; THLE UNIVERSITY of EDINBURGH ‘epCC‘

Multi-level memory exploitation

totalfilename = (char *)malloc(1000*sizeof (char)):;

strcpy (totalfilename, "/mnt/pmem fsdax");

sprintf (totalfilename+strlen (totalfilename), "%d/", socket);
strncat (totalfilename, filename, strlen(filename));

sprintf (totalfilename+strlen (totalfilename), "%d", rank);

// total memory requirements including pointers

mallocsize = nx*sizeof (void *) + nx*ny*typesize;
if ((array2d = pmem map file(totalfilename, mallocsize,
PMEM FILE CREATE|PMEM FILE EXCL,
0666, mapped len, &is pmem)) == NULL) {

perror ("pmem map file'");

fprintf (stderr, "Failed to pmem map file for filename: $s\n",totalfilename);

exit (-100);

void swap pointers (double*** pa, double*** pb) {
double** temp = *pa;
*pa = *pb;
*pb = temp;

No persistence: DRAM: 7.95 seconds B-APM: 9.64 seconds
Persistence: DRAM: 7.95 seconds B-APM: 10.67 seconds

THLE UNIVERSITY of EDINBURGH

CPCC

Performance — workflows

OpenFOAM simulation: low-Reynolds number
laminar turbulent transition modeling

Input: mesh with =43M points

Stages: linear decomposition,

parallel solver

768 MPI processes, 16 nodes

2 configurations:

(1) read/write to Lustre

(2) stage in, read/write on NVM, stage out

Performance benefits of data staging on OpenFOAM workflow

16 nodes, 768 MPI procs 20 nodes, 960 MPI procs
Stage Lustre B-APM Benefit Lustre B-APM Benefit
decomposition 1191 secs 1105 secs — 1841 secs 1453 secs —
data staging - 32 secs — — 330 secs —
solver 123 secs 66 secs 46% faster 664 secs 78 secs 88% faster
Total 1314 secs 1203 secs 8% faster 2505secs 1861 secs 25% faster

THE UNIVERSITY of EDINBURGH €OCC|

N3D/SEMTEX

- Small test case:

- (2 processes
- 900,000 files, 4.5 TBs produced

° Larger test case:
- 912 processes
- 6,400,000 files, 30 TBs produced

- Files required to transfer
data from the forward
phase to the adjoint phase

- Velocity on each process at
each time step

~ THE UNIVERSITY of EDINBURGH

Lusire server CPU load
300

250
200
150
100
50
9/1216:00 9/13 00:00 9/13 08:00 9/13 16:00 9/14 00:00

== omd.nextgenio-storage-server-a.CPUload.load1 omd.nextgenio-storage-server-b.CPUload.load1

Lustre servers network throughput
700 MB/s

600 MB/s
500 MB/s
400 MB/s
300 MB/s
200 MB/s
100 MB/s

0B/s

9/1216:00 9/13 00:00 9/13 08:00 9/1316:00 9/14 00:00

== Read (sent to clients) Write (received from clients)

Lustre servers LNET packets
20 kpps

15kpps
10 kpps
5 kpps

0pps
9/1216:00 9/13 00:00 9/13 08:00 9/13 16:00 9/14 00:00

== Qut In
Lustre metadata
4.0K ops
3.0K ops

2.0K ops

1.0K ops '
|)
!

vops ___m_.h'm|| "IWIIII||iI?ﬁWIIIIHIIMIII:IIIIHHunm:m::hnunumnmmmm::__ bt et

9/14 08:00

9/14 08:00

9/14 08:00

, ||llmll

9/12 16:00 9/13 00:00 9/13 08:00 9/1316:00 9/14 00:00

== close) crossdir_rename) getattr) == getxattr) == link) == mkdir) ==mknod) == open) == rename) rmdir)

= setattr) == setxattr) == statfs) ==sync) == unlink)

9/14 08:00

== samedir_rename)

N3D/SEMTEX

Optimise by moving these temporary files to the
B-APM
Use as files initially

Small case single iteration runtime:
Lustre: 8403 seconds
B-APM: 7365 seconds
Larger scale case single iteration runtime:
Lustre: 76872 seconds
B-APM: 36354 seconds
Next step to remove the files and use as memory only
Lots of small access should benefit from this optimisation

’*f ‘ ﬁ;‘ 'HE UNIVERSITY of EDINBURGH ‘epCC‘

Performance - STREAM

https://github.com/adrianjhpc/DistributedStream.git

Min BW (GB/s) | Median BW (GB/s) | Max BW (GB/s)

App Direct (DRAM) 142

App Direct (DCPMM) 32 32 32
Memory mode 144 146 147
Memory mode 12 12 12
(large)

STREAM TYPE *a, *b, *c;

pmemaddr = pmem map file(path, array length,
PMEM FILE CREATE|PMEM FILE EXCL,
0666, &mapped len, &is pmem)
a
b
C

pmemaddr;
pmemaddr + (*array size+OFFSET) *BytesPerWord;
pmemaddr + (*array size+OFFSET)*BytesPerWord*2;

fpragma omp parallel for

for (J=0; j<*array size; J++){
aljl] = b[j]tscalar*cl[]j];

}

pmem persist(a, *array size*BytesPerWord);

) THE UNIVERSITY of EDINBURGH €OCC|

NUMA issues

IOR Easy Bandwidth fsdax

400 4 mmE Read
e Write
350
300
@
[ea] 4
] 250
5
T 200
=
=]
c
@ 150 4
100 -
50
o4 |IOR Easy Bandwidth using fsdax and 48 processes per node
1 2 4 8 16 Read
Nodes | WEE Rea
1750 e Write
1500 -
5 12501
m
e
= 1000 4
p=
=
=
2 750 -
[1+]
[ua]
500
250

THE UNIVERSITY of EDINBURGH e A
Nodes

NUMA issues

unsigned long get processor and core(int *socket, int *core) {

unsigned long a,d,c;

__asm__ volatile("rdtscp" : "=a" (a), "=d" (d), "=c" (c));
*socket = (c & OXFFFO000)>>12;

*core = c & OxFFF;

return ((unsigned long)a) | (((unsigned long)d) << 32);;

strcpy (path,"/mnt/pmem fsdax");
sprintf (path+strlen (path), "%d", socket/2);

sprintf (path+strlen (path), "/");

THE UNIVERSITY of EDINBURGH EPCC

Performance - workflows

B ¥ g & ¢ 8 &
SEEEEEE

uuuuu

§3EEEEE
E] g
g g

1 node
INBURGH

processes
80 files

aaaaaaaa

mmmmmmm

A

1

Persistent B-APM usage

Strategy needed to recover data on failure

Transactional approach
Use higher level pmem library functions

Application logic
Using low level pmem functions

Main focus Is hardware failure
l.e. reboot but memory still intact

Data resiliency another issue
What if an NVDIMM fails

Using low level pmem functionality there is no automatic
redundancy

No RAIDIng

’* ‘ &; THLE UNIVERSITY of EDINBURGH ‘epCC‘

Exploiting distributed storage

Node Node Node Node Node Node
N/
Network
Filesystem

‘

Node Node Node Node Node Node
Network
Filesystem

THE UNIVERSITY of EDINBURGH SPCC

Optimising data usage

Reducing data movement

Time and associated energy cost for moving data too
and from external parallel filesystems

Move compute to data

Considering full scientific workflow
Data pre-/post-processing
Multi-physics/multi-application simulations
Combined simulation and analytics

Enable scaling I/0O performance with compute
nodes

THE UNIVERSITY of EDINBURGH SPCC

Summary

Multi-level memory offers the potential for
Merging I/O and memory operations into a single space

Reducing volatile memory requirements for system
architectures

Removing I/O overheads and localising performance

Enabling new technologies with HPC systems
requires systemware support

Transparently handling data for applications
requires integration with job schedulers and data

storage targets

In-node B-APM is potentially very powerful for
performance, but will require some changes to use
efficiently (either at the systemware level or the
application level)

* ‘ 5 THLE UNIVERSITY of EDINBURGH ‘epCC‘

