
Optimising CFD I/O

through on-node non-

volatile memory
Adrian Jackson

a.jackson@epcc.ed.ac.uk

New Memory Hierarchies

• High bandwidth, on processor memory
• Large, high bandwidth cache

• Latency cost for individual access may be an issue

• Main memory
• DRAM

• Costly in terms of energy, potential for lower latencies
than high bandwidth memory

• Byte-addressable Persistent Memory

(B-APM)
• High capacity, ultra fast storage

• Low energy (when at rest) but still slower than DRAM

• Available through same memory controller as main
memory, programs have access to memory address
space

Memory

Storage

Cache

HBW Memory

Slow Storage

Cache

NVRAM

Fast Storage

Memory

HBW Memory

Slow Storage

Cache

NVRAM

HBW Memory

Cache

NVRAM

Optane DCPMM

Capacity, performance, and persistence

• New memory technologies offer differing options for
future memory hierarchies

• DRAM for average volume, average bandwidth, average
latency, high energy

• HBM for lower volume, high bandwidth, average latency, very
high energy

• B-APM for very high volume, low bandwidth, high latency,
low energy

• B-APM also offers persistence as a by-product of it’s
underlying hardware

• B-APM also presents asymmetric performance

• Higher bandwidth for reads

Hierarchical solutions

• Memory hierarchies offer automatic solutions for
managing different types of memory with different
performance characteristics

• i.e. Intel Memory mode – 2 level-memory

• Memory controller knows of the two levels of external
memory

• Fast and small memory is used as cache for slow and large
memory

• This ignores the persistent functionality available in
B-APM

• Volatile in practise, even though the storage medium is
persistent

I/O Performance

B-APM potential

• Provide scalable storage hardware with compute nodes

• Localise performance variation to assigned nodes

• Challenges:
• Data movement

• Interfaces

NGIO Prototype

• 34 node cluster with 3TB
of Intel DCPMM per node

• 2 CPUS per node, each
with 1.5TB of DCPMM and
96GB of DRAM

• External Lustre filesystem

• The EPCC NGIO system
was funded by the
European Union's
Horizon 2020 Research
and Innovation
programme under Grant
Agreement no. 671951.

Move from I/O to Data

• Biggest potential for B-APM is removing the I/O

interface

• moving from I/O and application memory operations model, to

just application operations

• Removing file (and block) operations

IOR - Data block sizes

Data access sizes

Multi-level memory exploitation

• Simple image sharpening stencil

• Each pixel replaced by a weighted
average of its neighbours

• weighted by a 2D Gaussian

• averaged over a square region

• we will use:

• Gaussian width of 1.4

• a large square region

• then apply a Laplacian

• this detects edges

• a 2D second-derivative 2

• Combine both operations

• produces a single convolution filter

• 4 similar sized arrays, two that are
updated and two that are source data

address = (int **) malloc(nx*sizeof(int *) + nx*ny*sizeof(int));

fuzzy = int2D(nx, ny, address);

pmemaddr1 = pmem_map_file(filename, array_size,PMEM_FILE_CREATE|PMEM_FILE_EXCL,

0666, &mapped_len1, &is_pmem)

fuzzy = int2D(nx, ny, pmemaddr1);

int **int2D(int nx, int ny, int **idata){

int i;

idata[0] = (int *) (idata + nx);

for(i=1; i < nx; i++){

idata[i] = idata[i-1] + ny;

}

return idata;

}

Multi-level memory exploitation

• Read-only data in DRAM

Calculation time was 56.175083 seconds

Overall run time was 58.261385 seconds

• Read-only data in B-APM

Calculation time was 53.992465 seconds

Overall run time was 56.385472 seconds

Multi-level memory exploitation

• 2D CFD Stream function kernel

• Jacobi kernel updates the grid

• Swap update and data arrays at each iterator

𝛻2Ψ =
𝜕2Ψ

𝜕𝑥2
+
𝜕2Ψ

𝜕𝑦2
= 0

Ψ𝑖−1,𝑗 +Ψ𝑖+1,𝑗 +Ψ𝑖,𝑗−1 +Ψ𝑖,𝑗+1 − 4Ψ𝑖,𝑗 = 0

psinew[i][j] = 0.25*(psi[i+1][j] + psi[i-1][j] +

psi[i][j+1] + psi[i][j-1])

Multi-level memory exploitation

No persistence: DRAM: 7.95 seconds B-APM: 9.64 seconds

Persistence: DRAM: 7.95 seconds B-APM: 10.67 seconds

totalfilename = (char *)malloc(1000*sizeof(char));

strcpy(totalfilename,"/mnt/pmem_fsdax");

sprintf(totalfilename+strlen(totalfilename), "%d/", socket);

strncat(totalfilename, filename, strlen(filename));

sprintf(totalfilename+strlen(totalfilename), "%d", rank);

// total memory requirements including pointers

mallocsize = nx*sizeof(void *) + nx*ny*typesize;

if ((array2d = pmem_map_file(totalfilename, mallocsize,

PMEM_FILE_CREATE|PMEM_FILE_EXCL,

0666, mapped_len, &is_pmem)) == NULL) {

perror("pmem_map_file");

fprintf(stderr, "Failed to pmem_map_file for filename: %s\n",totalfilename);

exit(-100);

}

void swap_pointers(double*** pa, double*** pb) {

double** temp = *pa;

*pa = *pb;

*pb = temp;

}

Performance – workflows

Performance benefits of data staging on OpenFOAM workflow

16 nodes, 768 MPI procs 20 nodes, 960 MPI procs

Stage Lustre B-APM Benefit Lustre B-APM Benefit

decomposition 1191 secs 1105 secs – 1841 secs 1453 secs –

data staging – 32 secs – – 330 secs –

solver 123 secs 66 secs 46% faster 664 secs 78 secs 88% faster

Total 1314 secs 1203 secs 8% faster 2505 secs 1861 secs 25% faster

OpenFOAM simulation: low-Reynolds number

laminar turbulent transition modeling

Input: mesh with ≈43M points

Stages: linear decomposition,

parallel solver

768 MPI processes, 16 nodes

2 configurations:

① read/write to Lustre

② stage in, read/write on NVM, stage out

N3D/SEMTEX

• Small test case:

• 72 processes

• 900,000 files, 4.5 TBs produced

• Larger test case:

• 512 processes

• 6,400,000 files, 30 TBs produced

• Files required to transfer
data from the forward
phase to the adjoint phase

• Velocity on each process at
each time step

N3D/SEMTEX

• Optimise by moving these temporary files to the

B-APM

• Use as files initially

• Small case single iteration runtime:

• Lustre: 8403 seconds

• B-APM: 7365 seconds

• Larger scale case single iteration runtime:

• Lustre: 76872 seconds

• B-APM: 36354 seconds

• Next step to remove the files and use as memory only

• Lots of small access should benefit from this optimisation

Performance - STREAM

Mode Min BW (GB/s) Median BW (GB/s) Max BW (GB/s)

App Direct (DRAM) 142 150 155

App Direct (DCPMM) 32 32 32

Memory mode 144 146 147

Memory mode

(large)

12 12 12

https://github.com/adrianjhpc/DistributedStream.git

STREAM_TYPE *a, *b, *c;

pmemaddr = pmem_map_file(path, array_length,

PMEM_FILE_CREATE|PMEM_FILE_EXCL,

0666, &mapped_len, &is_pmem)

a = pmemaddr;

b = pmemaddr + (*array_size+OFFSET)*BytesPerWord;

c = pmemaddr + (*array_size+OFFSET)*BytesPerWord*2;

#pragma omp parallel for

for (j=0; j<*array_size; j++){

a[j] = b[j]+scalar*c[j];

}

pmem_persist(a, *array_size*BytesPerWord);

NUMA issues

NUMA issues

unsigned long get_processor_and_core(int *socket, int *core){

unsigned long a,d,c;

__asm__ volatile("rdtscp" : "=a" (a), "=d" (d), "=c" (c));

*socket = (c & 0xFFF000)>>12;

*core = c & 0xFFF;

return ((unsigned long)a) | (((unsigned long)d) << 32);;

}

strcpy(path,"/mnt/pmem_fsdax");

sprintf(path+strlen(path), "%d", socket/2);

sprintf(path+strlen(path), "/");

Performance - workflows

1 node

4

processes

4 files

20 nodes

80 processes

80 files

1 node

4

processes

80 files

Persistent B-APM usage

• Strategy needed to recover data on failure

• Transactional approach
• Use higher level pmem library functions

• Application logic
• Using low level pmem functions

• Main focus is hardware failure
• i.e. reboot but memory still intact

• Data resiliency another issue
• What if an NVDIMM fails

• Using low level pmem functionality there is no automatic
redundancy

• No RAIDing

Exploiting distributed storage

Filesystem

Memory Memory Memory Memory Memory Memory

Node Node Node Node Node Node

Network

Filesystem

Network

Memory

Node

NVRAM

Memory

Node

NVRAM

Memory

Node

NVRAM

Memory

Node

NVRAM

Memory

Node

NVRAM

Memory

Node

NVRAM

Filesystem

Network

Memory

Node

NVRAM

Memory

Node

Memory

Node

NVRAM

Memory

Node

Memory

Node

NVRAM

Memory

Node

Optimising data usage

• Reducing data movement

• Time and associated energy cost for moving data too

and from external parallel filesystems

• Move compute to data

• Considering full scientific workflow

• Data pre-/post-processing

• Multi-physics/multi-application simulations

• Combined simulation and analytics

• Enable scaling I/O performance with compute

nodes

Summary

• Multi-level memory offers the potential for
• Merging I/O and memory operations into a single space

• Reducing volatile memory requirements for system
architectures

• Removing I/O overheads and localising performance

• Enabling new technologies with HPC systems
requires systemware support

• Transparently handling data for applications
requires integration with job schedulers and data
storage targets

• In-node B-APM is potentially very powerful for
performance, but will require some changes to use
efficiently (either at the systemware level or the
application level)

